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TESTS FOR UNIFORMITY ARISING FROM A

SERIES OF EVENTS

1. INTRODUCTION.

A number of problems in statistics reduce to testing whether a set

of values comes from a uniform distribution: when the limits of this

distribution are A,B we write it as U(A,B). Most tests reduce to a

test for U(0,1). We concentrate here on test situations which arise

from examining the times at which events occur. The scientist records

these times on the time-axis: how should they then be analyzed?

If the events are governed by a Poisson process (that is, are occurring

randomly in time), the intervals between events should have an exponential

distribution and should be independent. If not, certain alternatives are

often of interest. We therefore pose four questions which arise:

Question 1. Are the time intervals exponential, or

Question 2. Are the time intervals too regular or variable to be

exponential?

Question 3. Are the intervals independent?

Question 4. Is a cluster of events (or more than one) present?

Formally, these problems can be set up in relation to the times of

events, as follows. Let 0 < T(I ) < T(2 ) < < T(n ) be the times of

observed events, occurring with continuous observation in the interval

(0,T); let U (i) = T (i) /T, i=l,...,n, and define U (0) 0 and U(1) 1i.

Let the intervals between events be Ei = T(i)-T(il), for i=l,...,n-1,

with T E 0 and T T; these lead to Dpacincs P =
(0) (n+l)i i) i-D

i=l,... ,n+l, between the values U and D. = E/"T.
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Question 1 poses the question whether or not the E. come from the
1

exponential distribution F(x) = l-exp(-x/8), x > 0; when they do and

when they are independent, the transformation above gives a set U(W

which are ordered uniforms from U(0,1). Thus the test for the Poisson

process becomes a test of uniformity, specifically, a test of

HO: the U M are ordered uniforms from U(0,1).

The transformation from T (i) to U(i) effectively eliminates the

unknown parameter , which is of course connected with the unknown Poisson

process rate A.

When the times T(i) are given, it is very natural to examine the four

questions above by transforming to the U M and then making a test of H0.

In this article we discuss, in this context, many of the possible tests avail-

able, and note some features which should be emphasized and on which further

work is needed. For example, for some realistic alternatives some test statis-

tics might have to be used with the lower tail whereas use of the upper tail is

customary, thus changing accepted power comparisons, or, for others, existing

results on power must be discounted because they do not apply to the practical

alternatives. It may even be, of course, that the best tests of questions

1 to 4 are not made at all by transforming to the U M and then testing H0 *

This article forms part of a volume in honor of Professor Herbert Solomon,

and among the test statistics are some on which Professor Solomon and I

have worked together. These concern Ne man's tests and tests on spacings.

Perhaps we should also note that many of the distributional properties of

tests for uniformity invclve elegant geometric probability arzuments:

2
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Professor Solomon has maintained a long interest in this field (Solomon, 1978),

and it was my work on the null distribution of the goodness-of-fit statistic

V 2
U using arguments of geometric probability, which attracted his attention

and so began our association many ,ears aac.

2. LTERNATIVES TO UNIFORMITY.

We first consider some situations of interest in connection with Questions

l and 2.

(a) Testing That Lifetimes Are Exponential. Suppose the times T (i) are

breakdown times for a machine because a part has failed; at each breakdown

the part is immediately replaced, so that the intervals E. are the lifetimes

of the part.

It is common in reliability theory to test that such lifetimes are

exponential, and, assuming they are independent, the resulting T(i) will

be a realization of a Poisson process. The lifetime distributions, alterna-

tive to the exponential, which one might wish to detect, are then often the

Weibull distribution

F (x) = l-exp-( ) , x > 0W
ifx

and the Gamma distribution FG(x) = 0 f(t)dt, where

f(t) - , > 0.

If the E. are from F,(x) or Fw(x), we describe the resulting

D. E.i/ as scaled Gamma or scaled Weibull spacings; it will be importanti 1

J. 3

if~~~ N .... .%. . . . . . . . . . . .
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that a test for uniformity of the U(i) should be able to detect scaled

Gamma or scaled Weibull spacings. 'hen , 1, in both W'eitull and Gamnra

distributions, the lifetimes will be less spread out, for a given mean,

than if they were exponential (the coefficient of variation is 1, whereas

for exponential it is 1); we can call these lifetimes suaer-regular. Super-

regular lifetimes will produce a set U(i ) which are excessively evenly

spaced, more so than expected for a uniform sample. Stephens (1986b) calls

such U W superuniform, and tests of H0, in this context, should be able

to detect superuniform U Superregular lifetimes might be expected to

occur, for example, if there is a high level of quality control for the

machine component. If y < 1, the lifetimes are super-variable, and lead

to supervariable spacings between the U(i ) .

In reliability theory an important feature of a distribution is the

failure rate, or hazard rate, given by b(x) = f(x)/{l-F(x)1 . A distribu-

tion with decreasing failure rate (a DFR distribution) is such that b(x)

decreases as x increases, and for an increasing failure rate (IFR) distri-

bution, b(x) increases with x. An exponential distribution has constant

failure rate 1/? for all values of x; Gamma and Weibull distributions

FG(x) and Fw(x) have DFR if 1, and IFR if 1 1. If lifetimes

E. come from, say, a DFR Weibull distribution, the spacings between smalleri

lifetimes are stochastically smaller than corresponding exponential lifetimes

(that is, for the same n and i) and spacinvs between larger lifetimes are

larger than corresponding exponential spacings. This cannot easily be

detected, in a sequence of events, by lookinc at the lifetimes as natural".

indexed Iv time: the lifL.iesil. would first have to be, ordcrd :' izt

t01



a mental picture of the relative sizes of exponential spacings.

However, the following transformation can be used. Let m = n+l; we

have m lifetimes E., including the last (unfinished) lifetime T-T
1 n"

Let E' (m+l-i)(E (i)-E (i-) where E i) are tne ordered E.

(i=l,... ,n; E( 0). If the original E. were exponentials, the E'
(0)1

will be unordered independent exponentials with the same scale parameter

-" but if the E. were DFR, the E' will, on average, be increasinc with1 1

i. Correspondingly reversed results hold for lifetimes from an increasing

failure rate (IFR) distribution. Note that when the E. are independent

exponential, giving rise to independent exponential E!, these intervals

can be used to construct "times" i ' 2( E .(.) =I1) =  '!' i 2) =  i£ ' i 3) I 2  3 "

etc., and, by scaling to give U( )  T'( IT Ln~). the U'i ) , i=l, . ..,n,

should be (ordered) U(0,1). Tests based on the U'4 ) are often used to test for

exponentiality of the original E.; however, we have now moved away from

the naturally occurring time sequence T(i ) and we shall not consider

these tests at present: see Section 4.

(b) Testing That Lifetimes are Exponential, but with Average Lifetime

Changing with Time. Again let the times T(i) be breakdown times, and, for

a useful illustration, suppose they are mostly quite far apart. The life-

time of the replacement component might remain exponential as time passes,

but, perhaps for instance because of improved manufacturing methods, the

average lifetime (c) increases with time. On the whole, then, the E1

are gradually becoming longer as time goes on; the process generating

the T(i ) can be viewed as Poisson but with rate . no longer constant,

but takinz value (t) varvinc with time. : n would then exc-Ct the

-iin this example, to he closer tocethcr at thc 'eft end (zer,- tiin

at the right end (one).

- e 4% 5
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It might be worth observing that the distinction between the two

situations, (a) and (b) above, can easily be blurred by conventional

terminology. In (b), the machine breaks down less often if the component

has increased lifetime, and the machine might then be colloquiallv described

as having a decreasing failure rate (DFR). However, this is not the conven-

tional use of this phrase in the theory of reliability.

In the lifetime model (b) just discussed, the exponential distribution

is not fixed, but is chaan as time goes by; B is increasing, and hence

the spacings Ei are apparently getting longer. A graph of E. against

i would be increasing, whereas if D remained constant the values should

hover around the horizontal line E = . Also, if the E. came from a1

fixed Weibull or Gamma distribution, the E., plotted against i, would

again be horizontal around the mean value of the distribution. Tests

might be based on such graphs; see Stephens (1986b) for further comment.

To sum up this discussion, we might detect Gamma or Weibull alterna-

tives by looking for supervariable or superregular spacings between the

U (i) or, when the spacings are superregular, by looking directly for

superuniform U(i)  themselves. If the lifetimes are exponential but with

changing B, we must look for a drift of the U(i) towards one end or

the other. However, other methods may be better than any of these, as

we note in Section 4 below.

Of course, intervals can be superregular or supervariable without

coming from Gamma or Weibull distributions, and a distributional test

is not of primary interest. The events might be, for example, earthquakes,

eruptions of volcanoes, or signals from a "black hole". If these are not

Poisson, two important alternativcs are thiat thc-s arc ccrric it

% .2



regular intervals, or perhaps the opposite; that is, the E. are super-1

regular, or supervariable (Question 2 above). Earthquakes may occur in

clusters, with several aftershocks and then long intervals between the

clusters; the E. would then appear supervariable. Regular intervals

might be detected by eve, but overly dispersed intervals are much less

easy to observe.

Questions 3 and 4. It might also be of interest, in observing the T.,

to detect a cluster, that is, a bunch of values too close to be repre-

sented by the same Poisson process as the others; for example, super-

imposed on random signals from the black hole, the friends of E.T. are

sending frequent messages for him to call home. Detecting one or more

important clusters will be very similar to detecting if the overall

interval pattern shows too much dispersion.

Finally, there might be situations in which the successive intervals

E are correlated, for example, a large one might tend to be followed byi

a small one. This could, for example, be the case when the E. represents1

lengths of reigns of monarchs, where a long reign is followed by a short

one because the heir is already older; in fact this may explain why the

dates of reigns of English monarchs appear to be superuniform (Pearson, 1963).

3. TEST STATISTICS AND THE VARIOUS ALTERNATIVES.

In this section we examine how well test statistics for uniforitv

might be expected to detect the alternatives discussed in Section 2. The

given set of times T will be assume& to te convert,!_

by iv 1,...,n, as described !b)'.

r ')4



known, we can take T = T (n)  and have only n-I uniforms U(i), since

U 1 1.) Test statistics for the null hypothesis HO: the U are
(n) 0 )

ordered uniforms from U(0,1), can be roughly classified into four families:

(1) the Pearson X statistic; (2) Nevman smooth tests; (3) EDF tests:

(4) tests based on spacings. Comments follow on each of these families,

and we shall finally concentrate on family (4).

2
(1) Pearson's X statistic. This requires that the U be classified

(i)

into groups, preferably groups of equal probability; thus the line (0,1)

is divided into k cells, and if N. is the number of U W falling into

the j-th cell, Pearson's statistic is = k - (N.-1/k) with asympto-j=l j
2

tically a Xk l distribution. The grouping into cells loses much of the

information in the U(i ) , especially for a small sample, and the X 2-statistic

has low power against most alternatives. (Stephens, 1974; Quesenberry and

Miller, 1977). Also, as usually used, large values of X2 lead to rejec-

tion of H0; X2 will not then detect super-regularity of intervals unless

small values are declared significant also.

(2) Neyman Smooth Tests. Neyman suggested that an alternative density to

uniformity for U could be written

k
f(x) = c exp{l + Y e..(x)}, 0 < x 1, k= 1,2

j=l J

where l(x),Z 2 (x),... are Legendre polynomials, i,.... are parameters,

and c, a function of the ., is a normalizing constant. 1he >eendru

polynomials are ortho-mna on (0,1) and, bv.- var.:in k, f(x) a.

made to" a7 Dr':.i,-,te in- "iven ":cr,' v tl !. ; I', al dt r ,. ":i r~ t'

requires that all = ; thus the test H can bt put is :i t ,,,t

A



k = 0. By likelihood ratio methods, Nevman formed the test statisticj=l]e

N - k 2 n L ( j
Nk = Ek=l v, where v. is a Nevman component dependent on := n (x.).

The interesting point of this method, in the present context, is that the

first two components are functions of U and of the variance s () =

)2(ui-0.5) /n. A significant value for U might well occur in connection

with Question 1, if the lifetimes were exponential, but 3 was changing in

time; and a significant value for s2 (U) might arise if there is a cluster

of events, or possibly negatively auto-correlated intervals, both tending to

give a small variance of the U values. Percentage points for these

statistics are given by Stephens (1966). (Note that it is the variance

of the spacings D. which would be required to examine Question 2 - see

Greenwood's statistic below.) The individual components v. are normalized
J

to be N(0,1) asymptotically; they are then also independent, so that ior
2 2

large n, N 2 k Some studies have indicated that N2 is a good test

statistic for general alternatives; the addition of further components can

often weaken the overall power of N • However, "4k approaches its
A 2

asymptotic distribution X k only slowly: Solomon and Stephens (1983) have

recently given percentage points of N. based on fitting Pearson curves.

Curve-fitting using moments, to obtain percentage points, has been one of

our research interests in recent years (Solomon and Stephens, 1978), since

computers have made such techniques much more practicable. Further connents

on Nevman's statistics are in Solomon and Stephens (1983).

(3) EDF Tests. Tests based on the empirical distribution function are

becoming increasingly well-known. 1h? 7 ost a-Ou '4 thehe , the

statist...............: L I t
4~ (i)

%.
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i+ -
D + max((i/n-U W D max(D ,D ). other statistics are V = D +D ;

--(2i-l)(2n) -+ (12n); U- = '-n(L-l!2)- where

U =U /n; and(i)

-~n

A-= - (2i-])r oP U - lo (l-" ( ) in-n
i=1 i(n -i

As usuallv used, all these statistics are significant with _larue values

9

only. (Note that U2 is a statistic calculated from the ' of the
(i)

sample; this terminology makes an unfortunate double .se of U, hut

" is the usual name for this statistic so we retain it.)i +
Statistic D can be expected to detect a drift of U toward 0,

D a drift toward 1; however, if the direction of drift is not known,

D must be used, and then it will often be less powerful than v2 and,

more particularly, A2 . As usually used, the statistics will not detect

excessive regularity in the intervals - this would Produce snal values o,

the statistics, so lower tail tests must be considered. Autocorrelation

will tend also to produce low values of these statistics. A cluster

2might be detected by U or V, with large values significant, since

these detect change in variance of the l-set. Further comparisons o'

tests for these situations neL'C to) )V made.

(4) Snacins. The final 4roup of tests to he considered here is the Lroup based

on the sDacinzs D.- E./,. Note that because thw E. are divided> b their

total, the 1). are not independent ( Dn D=l), nor are they distrib.?uted1 "i=l -i =

exponentiallv on F the marinal distribution of any one spacino i-

F. = l-(-x), 0 x 1. (:reenwood (19-h) wa> one o: the -ire t to

lropiest , te-t <t , :2 , t 1-, ..-a

.a1(
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process) based on the D. Greenwood's statistic is G = 72 this

statistic was investigated by Moran (1947,1953,1981); interest has revived

again in recent years, and percentage points for finite n have been

given by Burrows (1979), Currie (1981) and Stephens (1981). There has also

been a great deal of interest in other functions of the Di (see Pvl-e, 1965),

and also in test statistics based on k-spacings. A k-spacing, for fixed, is

D = Ui -U- (i ) , i=0,1,...,n+l-k; clearly D.i above is D and for

this special case k= 1 the second subscript will be omitted. Also Di, k

is the sum of adjacent Di. and as i varies, the Di,k  overlap: non-
1 iik "

overlapping spacings will be defined by D,k U( (i), i = 0,kk etc.

The k-spacings are sometimes called gaps or stretches. Much interesting

work on the properties of k-spacings and statistics based on these has been

done in recent years; for references see Stephens (1986a). Our interest

here will be to see how this work relates to the questions posed above.

Major families of test statistics based on spacings are:

(a) Greenwood's G and its extensions. The natural extension for G

2
is G = Z D for fixed k = 1,2,3, etc, with the sum defined over"k i ,k
th ) r * *2
the possible i-values, (G is then GI) or Gk  D i Di i,k"

(b)L -z log D or L = 1 log Di
k e i,k k e ,k"

(c) M = 1 an,k M = min. Di,k for given k.

Sttsi ma.D n i,k

Statistic LI1 was first suggested by Moran (1951) in connection with

testing for randomness of events. L1  is the Maximum Likelihood test

statistic for exponentialitv of intervals against Gamma alternatives, so

4we fl::'t ;:.:rect :2. powcr tests of Question I against this alternative.

6?y .r~ .-z V . .~~~ .. x %7Qv.~.:- .. $t-o"~.-~-' KY.
"- -' ." . - . - . - .- - - - . - .
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Also, G is essentially the variance of the spacings: n times the

variance is ]-I (n-1), so mi-ht be useful in discussing )ue. tion

Of the manv results : ncernin, spacings statistics we highli-ht the

folljWin-.

(a) Percentage points for G (G Cl) have been referred to above. Points

for 2 and C, and also for Ll, for finite n, have recently been

given by McLaren and Stephens (1985). These were based on curve-fitting.

Gk  converges to asymptotic normality, but only very slowly: L 1 converges

* 2
-b also slowly, to a distribution approximated by a X distribution.

S( Su~ppoe the altr...i. 'e t- unioritv is f(x) - -l-(x) Inl/ 2. Cab-so

(1961) then showed the asymptotic relative efficiency (ARE) of tests based on

spacings to be zero compared to EDF tests. However, Weiss (1965) gives

an alternative which reverses this result. Among spacings themselves,

Cressie (1979) showed, essentially, that tests using Dik were asymp-

totically better than those using D for alternatives which wereC'. i,k

-1/4
step-functions, tending to the uniform like n , slower than Cibisov's,

and among such tests Gk was better than Lk  using ARE as criterion.

However, this cannot be the whole story: we have already observed that

L1  is the likelihood ratio test statistic in testing the spacings versus

scaled Gamma spacing alternatives, and should have some optimal properties.

The explanation appears to lie in the fact that the scaled Gamma spacings

alternatives do not give a density for U which is either on the Cibisov

or the Cressie model. Similar results appear to hold for Weibull spacings.

(c) McLaren and Stephens (1985) have investigated tests of H0  acainst

the alternative that the D. are scaled Cama spacings ()uestion I a-vte

and the Gamma alternative) and have found Lk better tha, C:k" re I,,

12
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(1985) has calculated the ARE of Gk to k for this situation. The

ARE Ak  of Gk  to Lk  is only 0.39 when k= I (showing the expected

excellent performance of L ) but increases to A5 = 0.74 and AI0 =0.85.

From Monte Carlo studies for finite n, the L-group clearlv dominates the

G-group, and they both are better than EDF statistics. For detecting super-

variable spacings (from a Gamma distribution with 1 1), all these

statistics are used in the "normal" way, with the upper tail significant.

For detection of super regular intervals, from, for example, a Gamma

distribution with "y > 1, which might well occur in practice, all the

statistics must be used with the lower tail significant. A possible test

statistic for super regular intervals would be Mk, looking to see if the

largest k-spacing were too small.

In the above stud on Lk and Gk the powers declined considerably

with increasing k. This seems reasonable; we know L1  to be the

Likelihood Ratio statistic, and unless the order in which the spacings

appear is held to be important, there is no reason why a statistic which

combines several in sequence should be especially effective.

(d) Autocorrelation. Ouesenberrv and Miller (1977) introduced the

statistic

n+l 2 n
Q= D 7 D D+

i~l 1 i=l i+l

to test for uniformity taking into account the possibility of autocorrelation

between intervals. It is easy to see that G,, = 2Q-D 2 2 so that-~~ n+l' ota

asymptotically 0 is equivalent to C,. McLaren and Stephens (1985) report

a study on power of tests for autocorrelited intervals involvinz EDF

statistics and also ( 1 ,t;2,: 3  and L,0.,P 3 . The alternatives to uniform

3,, 3



spacings (themselves dependent because :D. = 1) were autocorrelated scaled1

Gamma spacings. In this study, when correlation was positive, both the

Gk and Lk had power increasing with k; G2G 3 and L2 ,L3 were better

than all EDF statistics; L. and L3 were best overall. All statistics

were very poor at detecting negative autocorrelation such as might be

expected in some practical problems where large intervals are compensated

by small ones. Detection of this effect needs further study - in particular,

* n
the statistic Q E n= D D which forms part of Q might be effective

i 1 i i+l

standing alone.

(e) Searching for a Cluster. The EDF statistics U 2 and V, applied

to the set U, will tend to detect a cluster, or a separation into

two groups, one at each end of the (0,I) interval, since these statistics

detect a shift in variance of the U W from the expected uniform value

(Stephens, 1974) . Similarly the Neyman component v 2 will detect such

a shift in variance. However, the presence of a cluster may not influence

the overall variance enough to register significance with these statistics,

and it is natural to look at Mk (to see if the minimum k-order gap is

too small) to detect a cluster. Cressie (1977) has also examined the scan

statistic - the maximum number of observations NL9 in a window of width

L, as it moves along the (0,I) interval. Much work has been done, in

particular by Nauss, Weiss, and more recently Cressie, on statistics Mk

and NL; see references in the papers cited in this subsection and in

Stephens (1986a). As one might expect, there is a connection between the

two statistics: P(NL > x) = P(M- _ L) (Nauss, 1966), so that a test based

on one is equivalent to a test based on the other. Huntingdon and Nauss

(1975) gave the exact distribution theory of M, but the formulas are

% ~ .- . . . . .



difficult; Cressie (1977) has given asymptotic theory, that, on HO ,

Pn(1+1/k)k4' x) = exp(-xk/k:) as n - (recall that n is the number

of uniforms U W)). Cressie has shown that the power of against a

-1/4
stepfunction alternative tending to the uniform like n , is not as

good as that of L or GC. For other alternatives to clustering, kgodastato m o Gm .  k

may have greater power, although it may be difficult to define these. The

modelling of major earthquakes and aftershocks, where the aftershocks

produce a cluster, would appear to be a possible practical application. A

difficulty in applying these statistics is the choice of k, or the window

width L; for a-levels to be correct, this must not be decided after looking

at the times T(i) although this is a natural temptation. It would also be

valuable if a sequential test were available, first seeing if M is too

small, then M2 , etc.

A test for super-regularity of spacings might be based on +k (to

see if the largest k-order gap is too small). Deken (1980) and Solomon

and Stephens (1981) have given distribution theory and percentage points

for Mi for n = 5 and 10, and Deken gives also a Beta approximation

for larger n. Similar remarks to those above apply to the choice of k,

and to the desirability of a sequential test.

4. FINAL REMARKS.

In this article we have tried to draw attention to some of the out-

standing questions which arise when tests on a series of events are converted

to tests of uniformity. There are many ways in which events may depart

from a random sequence, and this means that test statistics which are

valuable for detecting one type of alternative will not bt, v-luabl tor

15



another. The choice of test statistics in some situations is still an oDen

question. Among factors to be considered are (a) some statistics may be

significant in the tail not usually used; (b) some statistics may have

a parameter which is difficult to choose (the order of Nevman's statisticj

for example, or of a spacing or set of spacings); (c) existin: power

studies may not be applicable to the alternatives of practical concern.

Two other important issues should also be raised. One is that, with

modern computer techniques, many statisticians will calculate many

statistics and look at them all. Then the above factors, couched as they

are in the classical language of hypothesis tu tin_, b... > .>,rtant:

formal testing will not be applicable, since the final significance level

is impossible to determine, and the best way to use the statistics is

% to allow them, or their significance levels, to throw light on the data

in the knowledge of what different alternatives might be expected to give.

Another question to be considered is whether or not it is always

useful to use the transformation to U(i), ,simple though it maw !-.. It

persuasive that to discuss autocorrelation, or a change in exponential

parameter, or clustering, one would examine the times and time intervals

A in situ; it is not so clear that to test that interval, are e:: 'ti,

with constant B, as opposed, say, to Gamma or Weibull, one should keep

the intervals as they occur, and it may be best, for example, to look at

them in order of size. The construction of E' and then ') in Section

2(a), uses the size order of the intervals, and an extensive literature

exists on tests based on the E' or the U' they are related to the
i (i)'

total time on test statistics and have much merit in ttcrms o .r ,

some discussion sc Stephens, l9SKb).

16
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Finallv, we should not foroet the wider cuestion whicni often 1ie-

behind statistical examination of events - how to model the events

realisticall". In all the applications which have been alluded to hert -

the incidence of disease, lifetimes in reliabilitv theory, sicnals from

outer space, earthquakes, eruption of volcanoes, anc c' course in man':

others, a good model will suggest preferential statistical techniaues.

Some interesting comments on modelling, relevant to spacings statistics,

* are in the discussion to Pyke (1965) and the points made then are still

pertinent twenty years later. This article merely attempts to see what

different statistics might be expected to do for us, and to suggest, in

addition, where work still must be done.
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